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Abstract. This article describes the design and the
functional verification of fiber optic system with an in-
novative non-invasive measuring probe for monitoring
respiratory and heart rate. The measuring probe is
based on Fiber Bragg Grating (FBG), and it is encap-
sulated in the PolyDiMethylSilozane polymer (PDMS).
PDMS offers a unique combination of suitable proper-
ties for the use in biomedical applications. The main
advantages include inert to human skin and immunity
to electromagnetic interference. The measuring probe
18 a part of contact strip which is placed on the chest of
the patient. The measurement is based on sensing the
movements of the thoracic cavity of the patient during
breathing. Movement (mechanical stress) is transferred
to FBG wusing the contact strip. Respiratory and heart
rate are analyzed using the spectral evaluation of the
measured signals. This monitoring method is fully di-
electric; thus the absolute safety of the patient is en-
sured. The main contributions of the article are a de-
sign of non-invasive probe encapsulated into a PDMS
polymer and implementation of the probe for humans
using a contact strip. This combination forms an es-
sential element of the measuring system. The set of
experimental measurements verified functionality with
respect to the position of the patient. Performed experi-
ments proved the functionality of the presented solution
so it can be utilized for further research in biomedical
applications.
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1. Introduction

The current trend of developments clearly indicates
that future monitoring essential vital functions of the
human body tend to sophisticated diagnostic equip-
ment and methods in biomedical applications. The
aim is to merge more diagnostic parameters to a sin-
gle universal probe or a universal measuring system.
Recently, the utilization of Optical Sensors has been
growing in variety of emerging biomedical applications
[I] and [2]. Based on the study of the literature re-
view, authors of this article introduce an innovative
combination of non-invasive measuring probe encapsu-
lated into PDMS and implementation into the clamp-
ing contact strip. Monitoring respiratory and heart
rate can be performed using one universal probe. The
measuring probe based on Bragg grating technology
and the probe encapsulated in a particular shape into
a PDMS polymer. Fiber-optical sensors have been in-
creasingly utilized in the biomedical applications, e.g.
for measuring respiratory and cardiac activity [3], for
specific heart rate monitoring [4], for early detection
of health deterioration through a network of FBG [5],
or for sensing respiratory parameters and the chemical
reactions of human skin to external influences by us-
ing a sensor based on an enlarged-taper tailored Fiber
Bragg Grating [6]. This fact is mainly due to char-
acteristic features of the optical sensor-power supply
independence and electromagnetic immunity. The op-
tical fiber sensors can be utilized without electrical
interference in the presence of other electrical equip-
ment. Thus, the safety of patient monitoring is not
affected, or more precisely, it makes the measurement
more safety. The combination with PDMS material
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further enhances comfort during monitoring parame-
ters. Biocompatibility is one of the primary factors for
the patient comfort. PDMS is inert to the human skin,
and it does not affect the patient’s body. Authors focus
on both description of the innovative non-invasive mea-
suring probe and on implementation of the probe for
measurement on human. The aim is not a comparison
with existing diagnostic tools and methods.

2. Gait Motion Capture

Siloxanes are the compounds which contain a Si-O-Si
bond in the molecule. This chemical group is spe-
cific for its stability; therefore, one can prepare an
endless chain with composed of -(O-Si-O-Si-O)-. The
last two free bonds of the silicon atom can be occu-
pied by various -HO groups or organic ligands such as
-CH3. The most commonly used compound is Polyd-
DiMethylSiloxane which is defined by the chemical for-
mula in the form: (CHjz)3SiO[SiO(CHj3)2]nSi(CHj)s.
The siloxanes are completely stable in standard condi-
tions and are not subject to degradation in the presence
of water or oxygen. The resulting products are solid or
liquid substances according to the number of ligands
and siloxane groups. Their other properties are both
hydrophobicity and almost complete inertness to living
organisms.

The production of PDMS involves three elements,
namely technical silicon, hydrochloric acid, and
methanol. This combination creates the so-called
chloromethane. The manufacturing process contains
four chemical phases: synthesis, rectification, hydroly-
sis, and polycondensation. Figure[I]describes chemical
composition of PDMS. Methyl (CHs) [7] and [8] repre-
sents the organic substituent in most cases.

CH:  CH: CHs
—si—to-si—F0—si—
CH:  CH: ' CHs

(CH3);Si0[SiO(CHs),].Si(CH3)s

Fig. 1: Chemical composition of PDMS.

Encapsulation of measuring probe was made by
PDMS with the designation of Sylgard 184. Syl-
gard 184 is a two-component casting compound;
wherein A component creates own pre-polymer and B
component is a curing agent. Both components are
mixed according to datasheet in a weight ratio of 10:1
(A:B). Bubbles and microbubbles which result from the
combination of the pre-polymer and the curing agent

can be removed using an ultrasonic bath. Homogeneity
of connection is provided using a laboratory shaker.

Sylgard 184 belongs to the moderately viscous lig-
uid elastomers. The primary characteristic of PDMS
is its temperature stability. PDMS is formed by the
bonds Si-CHg and Si-O having a high binding energy
(452 kJ - mole™!). PDMS withstands temperatures
ranging from —60 °C through 200 °C, in short-term
processes to 350 °C. At temperatures around 100 °C,
curing of Sylgard 184 can be performed within several
minutes.

Fiber-optical Bragg gratings are most commonly
used fiber-optical sensors for their spectral character-
istics [9] and [10]. Repeated changes in refractive in-
dex of the core of an optical fiber creates the grating.
Spectral reflection of a selected wavelength, known as
Bragg wavelength, occurs on periodic interfaces. All
the other wavelengths pass through the Bragg grating
without damping. Figure [2| shows the structure of the
FBG.
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A
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Fig. 2: Example of structure of Fiber Bragg Grating.

The Bragg wavelength Apg is given by following equa-
tion:

(1)

where nqry is the effective refractive index of the op-
tical fiber with Bragg grating and A is the period of
changes in the refractive index pitch for the fiber‘s core.
The effective refractive index in a single-mode optical
fiber can be approximated using the formula:

)\B = 27’Leff/\7

A2
Tegs = \/n2 + - (1.1428V - 0.996)*,  (2)

4m2r2?
where ns is the refractive index of the cladding, X is the
wavelength of transmitted light, r is the core diameter
and V is the normalized frequency.

The primary use of FBG is based on the deforma-
tional and temperature sensitivities. DBased on the
temperature evolution of mechanical stress, the Bragg
wavelength shift can be defined as:

A
A ke + (aa + an)AT,

= 3)

where k is the deformational coefficient, «, is the
optical temperature coefficient, aa is the coefficient
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of thermal expansion, AT is the temperature change
and ¢ is the applied deformation. Deformational de-
pendence and temperature dependence are determined
both by the parameter values and the central Bragg
wavelength. Normalized deformational and tempera-
ture coeflicients [II] are introduced for determination
of the individual sensitivities. Normalized deforma-
tional coefficient is given by:

1 AXp

. —0. .176 —1
Al = 078107 (ue),

(4)
and normalized temperature coefficient by:

1 A)g

= 6. .176 071'
N Ac = 667810 cc

()

FBGs are single-point sensors, with multiplexing
techniques we can join them together and obtain a mul-
tipoint measuring probe [12] and [I3].

3. Results

Implemented manufacturing technology of FBG encap-
sulation is based on the casting of the liquid PDMS into
the desired form (dimensions of the measuring probe).
We take into account the size, weight, and shape within
the design of the form. We create the rectangular shape
with dimensions of 80x40x5 mm. The casting insert
is created by a substrate into which is stored the bare
FBG. Process of encapsulation is divided into three in-
dependent steps: the integration of FBG into liquid
PDMS, the curing at a temperature of 100 °C + 3 %
in a temperature box for 60 minutes and 24 hour re-
laxation time. Results in the article [14] show that this
type of encapsulation does not affect the structure of
the FBG.

The measuring probe consists of the uniform FBG
with polyamide protection with Bragg wavelength of
1554.1207 nm. The width of the reflecting spectrum is
2.3241 nm and reflectivity is 95.7 %. Monitoring of the
basic parameters of FBG was performed during cur-
ing and after 24 hour relaxation time. Broad-spectrum
LED (Light Emitting Diode) light source with a central
wavelength of 1550 nm and an optical spectrum ana-
lyzer with a sampling frequency of 300 Hz were used for
monitoring the parameters. The final probe is shown
in Fig. 3]

Three different techniques for attaching the measur-
ing probe were tested within the implementation of the
probe on the human body. Based on the post-analysis,
we defined the most efficient suitable method of at-
tachment seems to be utilizing the contact strip placed
around the chest of the patient. The position of the
probe is in an area of the heart. The measurement is

Optical
fiber

Measuring
probe

Fiber Bragg
grating

Fig. 3: The measuring probe for monitoring respiratory and
heart rate.

based on sensing the widening of the ribcage of the pa-
tient during breathing. Movement (mechanical stress)
is transferred to FBG using the contact strip. Res-
piratory and heart rate are analyzed by the spectral
evaluation of the measured signals. Broad-spectrum
LED with a central wavelength of 1550 nm ensures
a source of light radiation. The methodology of the test
was based on sensing a minute measurement of breath
and heart rate with a sampling frequency of 300 Hz
at five tested people. Three positions of patients were
tested: static position in standing, static position in
sitting, and static position on the back. Figure [d]shows
measuring diagram for analyzing both heart and respi-
ratory rate.

OSA+LED | =

Contact strip

FBG Sensor

Fig. 4: Measuring diagram of respiratory and heart rate.

Figure[5]shows the measured changes of Bragg wave-
length of the respiratory rate for the tested person in
depending on the three selected positions. The respi-
ratory rate was derived using the dominant frequency
found via Fourier transform of the given waveform.
A 20 second time is always shown for better clarity.

Based on the post-analysis, digital IIR (Infinite Im-
pulse Response) filter utilized the measured waveforms
of the respiratory rate. This IIR filter is bandpass of
Butterworth type with a lower cut-off frequency of 1 Hz
and upper cut-off frequency of 5 Hz. The magnitude
response of the used digital IIR filter is shown in Fig.

Figure [6] shows resulting superimposed courses of
pulse activity over the courses of the breath for the
tested persons in depending on the three defined posi-
tions. Heart rate was calculated based on the Fourier
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Fig. 5: Courses of respiratory rate and her frequency spectra: (a)—(b) static position in standing, (c)—(d) static position in sitting,
(e)—(f) static position on the back.
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Fig. 6: Courses of heart rate and her frequency spectra: (a)—(b) static position in standing, (c)—(d) static position in sitting,
(e)—(f) static position on the back.
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Fig. 7: The magnitude response of the used digital IIR filter.

transform, or more precisely, from the dominant fre-
quency of the given waveforms. For clarity, only 10 sec-
onds of the signal is plotted

Table [I| shows the dominant frequency and respira-
tory rate for the displayed courses in Fig. Table
shows the dominant frequency and heart rate for the
displayed courses in Fig. [6}

Tab. 1: Statistical data for courses of respiratory rate in Fig.

Defined Dominant Respiratory
position frequency (Hz) | Rate (min—!)
Static position 0.3611 21.6676
in standing
Static position 0.3439 20,6386
in sitting
Static position
on the back 0.2479 14.8741

Tab. 2: Statistical data for courses of heart rate in Fig. @

Defined Dominant Heart Rate
position frequency (Hz) (min—1)
Static position 1.0473 62.8363
in standing
Static position 1.0319 61.9159
in sitting
Static position
on the back 1.2808 76.8499
4. Conclusion

The authors described the design, implementation and
verification (by experimental measurement) of the in-
novative prototype of the non-invasive measuring probe
to monitoring respiratory and heart rate of the hu-
man body. PDMS has a unique combination of prop-
erties, and is suitable for use in biomedical applica-
tions. The main advantages include inert to human
skin, immunity to electromagnetic interference, me-
chanical durability, and temperature stability. The

main contribution of this paper are the design, imple-
mentation of non-invasive measuring probe encapsu-
lated into PDMS, and implementation of the probe to
the human using clamping contact strip. This combi-
nation creates a fundamental element of the measuring
system. The repeated test of assembled prototype con-
firmed the functionality. Experimental results, which
were carried out by the measuring probe in the labo-
ratory, demonstrated the functionality of the proposed
solution. Three general positions for measurements of
mentioned vital parameters were analyzed. Based on
the post-analysis, we can say that positions do not af-
fect the functionality of the measuring probe. Respira-
tory and heart rate were derived based on the Fourier
transform, or more precisely, from the dominant fre-
quency component of the given waveform. The article
does not include all aspects which can arise or affect
monitoring of the mentioned fundamental life functions
within the innovative measuring probe. It is the ini-
tial step to the new little-described medical field of
non-invasive monitoring of the human body. The com-
prehensive characterization of our novel sensor and its
comparison to other existing sensors, and the further
signal processing will be the aim of our future articles.
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